
CS 329A, Handout #13Nayak

Example: Cassini propulsion system

Helium tankHelium tank

Fuel tankFuel tankOxidizer tankOxidizer tank

MainMain
EnginesEngines

Pressure1 = nominal
Flow1 = zero

Pressure2= nominal
Flow2 = positive

Acceleration = zero

CS 329A, Handout #13Nayak

Model-based diagnosis system

A diagnosis system is a triple (SD, COMPS, OBS)

• SD is a system description

– expressed as a set of constraints, propositional clauses,
first-order formulae …

• COMPS is finite set of components

– a component c can be failed, AB(c), or normal, ¬AB(c)

– SD specifies the consequences of a component being
normal or failed

• OBS is a set of observations

– expressed as variable values, propositional clauses, first-
order formulae…

CS 329A, Handout #13Nayak

Consistency-based diagnosis

• Given a set of components subset of COMPS, a candidate is

Cand(∆) = Λc AB(c) Λ Λc ∈ COMPS \
¬AB(c)

• A candidate Cand(∆) is a diagnosis if and only if
SD ∪ OBS ∪ Cand(∆)

is satisfiable

• Handles single and multiple fault cases

• Does not require fault models

CS 329A, Handout #13Nayak

Example: Adder-multiplier

A2

A1

M1

M2

M3

3
2

2
3

2
3

10

12

CS 329A, Handout #13Nayak

Conflicts

• A conflict is a disjunction of AB(…) literals entailed by
SD ∪ OBS

– for conflict conf : SD ∪ OBS ∪ ¬ conf is inconsistent

• Theorem: Let Π be the set of conflicts of a system. A
candidate Cand() is a diagnosis if and only if

 Π ∪ Cand()
is satisfiable

CS 329A, Handout #13Nayak

Examples of conflicts

Helium tankHelium tank

Fuel tankFuel tankOxidizer tankOxidizer tank

MainMain
EnginesEngines

Pressure1 = nominal
Flow1 = zero

Pressure2= nominal
Flow2 = positive

Acceleration = zero

CS 329A, Handout #13Nayak

Example: Using conflicts

• Conflicts can be generated during consistency checking

• Can focus consistency checking

A2

A1

M1

M2

M3

3
2

2
3

2
3

10

12

CS 329A, Handout #13Nayak

Fault models

W1

W3

W5

W2

W4

W6

B1

B2

B3

Obs: B1 is off
B2 is off
B3 is on

CS 329A, Handout #13Nayak

Component modes

• Diagnosis can become indiscriminate without fault models

• Each component has a set of modes with associated models

– normal modes

– fault modes

• Each component has the unknown fault mode with the empty
model

• Each mode has an associated probability

• Diagnosis is the combinatorial optimization problem of
finding the most likely component modes

CS 329A, Handout #13Nayak

Combinatorial optimization problem

• A combinatorial optimization problem is a tuple (V, f, c)

• V is a set of discrete variables with finite domains

• An assignment maps each v V to a value in v’s domain

• f is a function that decides feasibility of assignments

– f(a) returns true if and only if assignment a is feasible

• c is a function that returns the cost of an assignment

– c(a) is the cost of assignment a

– assignment a1 is preferred over assignment a2 if c (a1) < c(a2)

• Problem:

 min c(V) st f(V)

CS 329A, Handout #13Nayak

Simple cost model

• Each variable has an associated cost of assigning it a value

– c(vi= li) is the cost of assigning value li to variable vi

• Cost of a complete assignment is the sum of the costs of the
individual variable assignments

– if assignment a is v1=l1,…,vn=ln then c(a) = Σi c(vi=li)

• Costs of all variable values are non-negative

– c(vi= li) ≥ 0

• Each variable has a minimum cost value with cost 0

– generating a least cost assignment is straightforward

– each variable is assigned a value with cost 0

CS 329A, Handout #13Nayak

Using the simple cost model

• Most probable diagnosis with independent component failures
p(v1=l1,…,vn=ln) = p(v1=l1) … p(vn=ln)

– let mi be the most probable mode for component vi

– c(vi=li) = log(p(vi=li) p(vi=mi))

⇒all costs are non-negative with c(vi=mi) = 0

⇒for any assignments a1 and a2, c(a1) ≤ c(a2) iff p(a1) ≥ p(a2)

CS 329A, Handout #13Nayak

Best first search

function BFS(V, f, c)
Initialize Agenda to a least cost assignment
Initialize Solutions to the empty set
while Agenda is non-empty do

Let A be one of the least cost assignments in Agenda
Remove A from Agenda
if f(A) is true then Add A to Solutions
Add immediate successor assignments of A to Agenda
if enough solutions then return Solutions

endwhile
return Solutions

end BFS

CS 329A, Handout #13Nayak

Required subroutines for BFS

• Generating a least cost assignment

• Generating the immediate successors of an assignment

– completeness: every feasible assignment must be the
(eventual) successor of the least cost assignment

– monotonicity: if b is an immediate successor of a, then
 c(a) ≤ c(b)

• Deciding that enough solutions have been generated

– maximum number of solutions

– minimum difference between cost of best feasible solution
and the cost of the best assignment on the Agenda

– minimum difference between costs of the last two
assignments

• Agenda management as a priority queue

CS 329A, Handout #13Nayak

Representing assignments

• Each assignment is represented by the set of variable values
that differ from the least cost assignment

• Least cost assignment {v1=a1, v2=a2, v3=a3}

• Assignment {v1=a1, v2=a2, v3=b3} represented as just {v3=b3}

dom(v1) = {a1, b1, c1}
dom(v2) = {a2, b2, c2}
dom(v3) = {a3, b3, c3}

c(vi=ai) = 0
c(vi=bi) = 1
c(vi=ci) = 2

CS 329A, Handout #13Nayak

Basic successor function

• Assignment A2 is an immediate successor of assignment A1 if

– the representation of A1 is a subset of the representation of A2;

– the representations of A1 and A2 differ by exactly one variable
value

– e.g., {v3=b3} is an immediate successor of {}

– e.g., {v3=b3 , v2=b2} is an eventual successor, but not an
immediate successor, of {}

• Definition of immediate successors is

– complete: all assignments are eventual successors of the least
cost assignment

– monotonic: if A2 is an immediate successor of A1, then
 c(A1) ≤ c(A2)

CS 329A, Handout #13Nayak

2

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

v1=b1
v2=b2

v1=b1
v2=c2

v1=c1
v2=b2

v1=c1
v2=c2

v2=b2
v3=b3

v2=c2
v3=b3

v2=b2
v3=c3

v2=c2
v3=c3

v1=b1
v3=c3

v1=c1
v3=b3

v1=b1
v3=b3

v1=c1
v3=c3

v1=b1
v2=b2
v3=b3

v1=b1
v2=b2
v3=c3

v1=b1
v2=c2
v3=b3

v1=c1
v2=b2
v3=b3

v1=c1
v2=c2
v3=b3

v1=c1
v2=b2
v3=c3

v1=b1
v2=c2
v3=c3

v1=c1
v2=c2
v3=c3

0

1 2 1 2 1 2

4

3 4 4 4 5 5 5 6

Successor lattice

dom(v1) = {a1, b1, c1}
dom(v2) = {a2, b2, c2}
dom(v3) = {a3, b3, c3}

c(vi=ai) = 0
c(vi=bi) = 1
c(vi=ci) = 2

CS 329A, Handout #13Nayak

Using conflicts

• Requirement: whenever f determines that an assignment is
infeasible, it returns a conflict

– if assignment A is infeasible, then A itself is trivially a
conflict

– ideally, f should return a minimal infeasible subset of A as a
conflict

– conflicts can be generated using dependency tracking in a
truth maintenance system

CS 329A, Handout #13Nayak

Focusing with conflicts

• Lemma: Let A2 be an (eventual) successor of A1 such that A1 is
subsumed by a conflict N, but A2 is not. Then there exists an
immediate successor A3 of A1 that is not subsumed by N such
that A2 is an (eventual) successor of A3.

⇒ If an assignment A1 is infeasible and is subsumed by a conflict
N, then we need only generate those immediate successors of
A1 that are not subsumed by N

– the lemma ensures that completeness is preserved

– the smaller the conflict, the fewer the immediate successors

A1

A3

A2

CS 329A, Handout #13Nayak

{}0

Initializing the agenda

Untouched

On agenda

CS 329A, Handout #13Nayak

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

v1=b1
v2=b2

0f({}) is false
(v1=a1) is a conflict

1 2

Assignment {} is infeasible

Infeasible

CS 329A, Handout #13Nayak

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

v1=b1
v2=b2

v1=b1
v2=c2

v1=b1
v3=c3

v1=b1
v3=b3

0f({v1=b1}) is false
(v1=b1, v2=a2) is a conflict

1 2

2
3

Assignment {v1=b1} is infeasible

CS 329A, Handout #13Nayak

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

v1=b1
v2=b2

v1=b1
v2=c2

v1=b1
v3=c3

v1=b1
v3=b3

v1=b1
v2=b2
v3=b3

v1=b1
v2=b2
v3=c3

0f({v1=b1 , v2=b2}) is true

1 2

2
3

3 4

Feasible

Least cost feasible assignment found

CS 329A, Handout #13Nayak

Decreasing agenda size

• Agenda size can be problematic in a best first search
– for a branching factor b, agenda grows to size O(bk) after k checks

– inserting b elements into the agenda after k checks is O(b logb+b logk)

• Immediate successors of an assignment are totally ordered
– non-least cost successors only checked after least cost successor

⇒ Insert only least cost successor onto agenda
Sort remaining successors
Each assignment has exactly two successors
– least cost immediate successor

– next more expensive sibling

• Size of the agenda is bounded by the number of checks
– inserting b successors after k checks is O(b logb + 2logk)

